Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Microbiol Spectr ; : e0011124, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651886

RESUMO

Drug efflux systems have recently been recognized as a significant mechanism responsible for multidrug resistance in bacteria. In this study, we described the identification and characterization of a new chromosomally encoded efflux pump (SA00565) in Staphylococcus aureus. SA00565, which belongs to the drug/metabolite transporter (DMT) superfamily, was predicted to be a 10-transmembrane segment transporter. To evaluate the role of sa00565 in resistance, we generated sa00565 gene deletion mutant (Δsa00565) and assessed its susceptibility to 35 different antibiotic treatments. Our results demonstrated that the Δsa00565 mutant exhibited reduced resistance to tetracycline and doxycycline, with 64-fold and 12-fold decreased MICs, respectively. The mechanism of SA00565-mediated tetracycline resistance was demonstrated that SA00565 possesses the capability to efficiently extrud intracellular tetracycline into the environment. The efflux activity of SA00565 was further validated using EtBr accumulation and efflux assays. In summary, our study uncovered a previously unknown function of a DMT family transporter, which serves as a tetracycline efflux pump, thereby contributing to tetracycline resistance in S. aureus.IMPORTANCEIn this study, we addressed the significance of drug efflux systems in multidrug resistance of Staphylococcus aureus, focusing on the unexplored efflux pump SA00565 in the drug/metabolite transporter (DMT) superfamily. Through phylogenetic analysis, gene knockout, and overexpression experiments, we identified the role of SA00565 in antibiotic resistance. The Δsa00565 mutant showed increased susceptibility to tetracycline and doxycycline in disk diffusion assays, with significantly lower MICs compared to the WT. Remarkably, intracellular tetracycline concentration in the mutant was two- to threefold higher, indicating SA00565 actively eliminates intracellular tetracycline. Our findings emphasize the pivotal contribution of SA00565 to tetracycline antibiotic resistance in S. aureus, shedding light on its functional attributes within the DMT superfamily and providing valuable insights for combating multidrug resistance.

2.
Huan Jing Ke Xue ; 45(5): 3037-3046, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629564

RESUMO

Through lettuce potting experiments, the effects of different types of biochar (apple branch, corn straw, and modified sorghum straw biochar with phosphoric acid modification) on lettuce growth under tetracycline (TC) and copper (Cu) co-pollution were investigated. The results showed that compared with those under CK, the addition of biochar treatment significantly increased the plant height, root length, shoot fresh weight, and root fresh weight of lettuce (P < 0.05). The addition of different biochars significantly increased the nitrate nitrogen, chlorophyll, and soluble protein content in lettuce physiological indicators to varying degrees, while also significantly decreasing the levels of malondialdehyde, proline content, and catalase activity. The effects of biochar on lettuce physiological indicators were consistent during both the seedling and mature stages. Compared with those in CK, the addition of biochar resulted in varying degrees of reduction in the TC and Cu contents of both the aboveground and underground parts of lettuce. The aboveground TC and Cu levels decreased by 2.49%-92.32% and 12.79%-36.47%, respectively. The underground TC and Cu levels decreased by 12.53%-55.64% and 22.41%-42.29%, respectively. Correlation analysis showed that nitrate nitrogen, chlorophyll, and soluble protein content of lettuce were negatively correlated with TC content, whereas malondialdehyde, proline content, and catalase activity were positively correlated with TC content. The resistance genes of lettuce were positively correlated with TC content (P < 0.05). In general, modified biochar was found to be more effective in improving lettuce growth quality and reducing pollutant accumulation compared to unmodified biochar, with modified sorghum straw biochar showing the best remediation effect.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Cobre , Alface , Poluentes Ambientais/análise , Solo , Catalase , Nitratos/análise , Antibacterianos , Tetraciclina/análise , Carvão Vegetal , Poluentes do Solo/análise , Clorofila/análise , Malondialdeído , Nitrogênio/análise , Prolina
3.
Environ Pollut ; 349: 123943, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599271

RESUMO

Aeromonas hydrophila has ability to spread tetracycline resistance (tetR) under stresses of oxytetracycline (OTC), one of the most important antibiotics in aquaculture industry. Even though environmental reservoir of Aeromonas allows it to be at interfaces across One Health components, a robust modelling framework for rigorously assessing health risks is currently lacking. We proposed a One Health-based approach and leveraged recent advances in quantitative microbial risk assessment appraised by available dataset to interpret interactions at the human-animal-environment interfaces in various exposure scenarios. The dose-response models were constructed considering the effects on mortality for aquaculture species and tetR genes transfer for humans. A scenario-specific risk assessment on pond species-associated A. hydrophila infection and human gut-associated tetR genes transfer was examined. Risk-based control strategies were involved to test their effectiveness. We showed that farmed shrimp exposed to tetracycline-resistant A. hydrophila in OTC-contaminated water experienced higher infection risk (relative risk: 1.25-1.34). The tetR genes transfer risk for farmers in shrimp ponds (∼2 × 10-4) and swimmers in coastal areas (∼4 × 10-6) during autumn exceeded acceptable risk (10-6). This cautionary finding underscores the importance of accounting for monitoring, assessing, and mitigating occupational health hazards among workers in shrimp farming sectors within future One Health-based strategies for managing water infection risks. We recommend that OTC emission rate together with A. hydrophila concentration should be reduced by up to 70-99% to protect human, farmed shrimp, and environmental health. Our predictive framework can be adopted for other systems and be used as a "risk detector" for assessing tetR-related health risks that invoke potential risk management on addressing sustainable mitigation on offsetting residual OTC emission and tetR genes spread in a species-human-environmental health system.

4.
J Environ Manage ; 356: 120614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513588

RESUMO

Excessive use of tetracycline antibiotics in poultry farming results in significant concentrations of these drugs and tetracycline resistance genes (TRGs) in chicken manure, impacting both environmental and human health. Our research represents the first investigation into the removal dynamics of chlortetracycline (CTC) and TRGs in different layers of an ex situ fermentation system (EFS) for chicken waste treatment. By pinpointing and analyzing dominant TRGs-harboring bacteria and their interactions with environmental variables, we've closed an existing knowledge gap. Findings revealed that CTC's degradation half-lives spanned 3.3-5.8 days across different EFS layers, and TRG removal efficiency ranged between 86.82% and 99.52%. Network analysis highlighted Proteobacteria and Actinobacteria's essential roles in TRGs elimination, whereas Chloroflexi broadened the potential TRG hosts in the lower layer. Physical and chemical conditions within the EFS influenced microbial community diversity, subsequently impacting TRGs and integrons. Importantly, our study reports that the middle EFS layer exhibited superior performance in eliminating CTC and key TRGs (tetW, tetG, and tetX) as well as intI2. Our work transcends immediate health and environmental remediation by offering insights that encourage sustainable agriculture practices.


Assuntos
Clortetraciclina , Esterco , Animais , Humanos , Esterco/análise , Galinhas , Fermentação , Antibacterianos/farmacologia , Antibacterianos/análise , Tetraciclina , Genes Bacterianos
5.
Ecotoxicol Environ Saf ; 271: 115918, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232521

RESUMO

Tetracycline antibiotics play a vital role in animal husbandry, primarily employed to uphold the health of livestock and poultry. Consequently, when manure is reintegrated into farmland, tetracycline antibiotics can persist in the soil. Simultaneously, to ensure optimal crop production, organochlorine pesticides (OCPs) are frequently applied to farmland. The coexistence of tetracycline antibiotics and OCPs in soil may lead to an increased risk of transmission of tetracycline resistance genes (TRGs). Nevertheless, the precise mechanism underlying the effects of OCPs on tetracycline antibiotics and TRGs remains elusive. In this study, we aimed to investigate the effects of OCPs on soil tetracycline antibiotics and TRGs using different concentrations of doxycycline (DOX) and pentachlorophenol (PCP). The findings indicate that PCP and DOX mutually impede their degradation in soil. Furthermore, our investigation identifies Sphingomonas and Bacillus as potential pivotal microorganisms influencing the reciprocal inhibition of PCP and DOX. Additionally, it is observed that the concurrent presence of PCP and DOX could impede each other's degradation by elevating soil conductivity. Furthermore, we observed that a high concentration of PCP (10.7 mg/kg) reduced the content of efflux pump tetA, ribosome protective protein tetM, tetQ, and passivating enzyme tetX. In contrast, a low PCP concentration (6.4 mg/kg) only reduced the content of ribosome protective protein tetQ. This suggests that PCP may reduce the relative abundance of TRGs by altering the soil microbial community structure and inhibiting the potential host bacteria of TRGs. These findings have significant implications in understanding the combined pollution of veterinary antibiotics and OCPs. By shedding light on the interactions between these compounds and their impact on microbial communities, this study provides a theoretical basis for developing strategies to manage and mitigate their environmental impact, and may give some information regarding the sustainable use of antibiotics and pesticides to ensure the long-term health and productivity of agricultural systems.


Assuntos
Pentaclorofenol , Praguicidas , Animais , Doxiciclina/farmacologia , Pentaclorofenol/toxicidade , Solo/química , Resistência a Tetraciclina/genética , Microbiologia do Solo , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Genes Bacterianos , Praguicidas/farmacologia , Criação de Animais Domésticos
6.
Arch Microbiol ; 206(1): 33, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133813

RESUMO

The dissemination of antimicrobial-resistant bacteria through environment is a major health concern for public health. Pathogenic bacteria in natural environment can mediate the transfer of antimicrobial-resistant genes via horizontal gene transfer to naturally occurring bacteria in the soil. Bhargavaea beijingensis is a Gram-negative bacterium that is commonly found in soil and water. In recent years, there has been an emergence of antibiotic-resistant strains of environmental bacteria, which pose a significant threat to human health. One mechanism of antibiotic resistance in bacteria is through the acquisition of plasmids, which can carry genes that confer resistance to various antibiotics. In this study, a novel plasmid of repUS12 replicon type was identified in the strain PS04 of B. beijingensis, which carried the ermT and tet(L) genes, encoding resistance to macrolides, lincosamides, and tetracycline. The plasmid was found to be the first of its kind in B. beijingensis and was thought to have been acquired through horizontal gene transfer. The emergence of plasmid-mediated resistance in B. beijingensis highlights the need for continued surveillance and monitoring of antibiotic resistance in environmental bacteria.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Bactérias/genética , Genômica , Solo
7.
Iran J Microbiol ; 15(5): 625-630, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37941879

RESUMO

Background and Objectives: An increase in the antibiotic resistance of Shigella isolates has caused major global challenges in antimicrobial therapy. Knowledge of local antibiotic resistance trends is essential for selecting appropriate antibiotic treatment regimens. This study aimed to evaluate the frequency of efflux-mediated tetracycline resistance (tet) and plasmid-mediated quinolone resistance (qnr) genes among Shigella isolates. Materials and Methods: This survey investigated 91 Shigella isolates, obtained from children with acute diarrhea. The isolates were identified using standard biochemical tests and confirmed by polymerase chain reaction (PCR) assay. Besides, the susceptibility of isolates to six selected antibiotics was assessed by the disk diffusion method. All tetracycline-resistant and nalidixic acid and ciprofloxacin resistant strains were screened for tet and qnr genes by a multiplex PCR assay. Results: According to the results of antibiotic susceptibility tests, the highest level of antibiotic resistance was related to tetracycline (80.2%) and doxycycline (78.1%), respectively. All isolates were sensitive to tigecycline. The PCR results showed that 40.6%, 3.1%, 21.8%, 61.6% and 28.7% of the isolates carried qnrA, qnrB, qnrS, tetA, and tetB genes, respectively. None of the isolates contained tetC and tetD genes. Conclusion: The current findings revealed that tetA and qnrA genes might play a key role in conferring tetracycline and quinolone resistance.

8.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37977851

RESUMO

Acinetobacter spp. and other non-fermenting Gram-negative bacteria (NFGNB) represent an important group of opportunistic pathogens due to their propensity for multiple, intrinsic, or acquired antimicrobial resistance (AMR). Antimicrobial resistant bacteria and their genes can spread to the environment through livestock manure. This study investigated the effects of fresh manure from dairy cows under antibiotic prophylaxis on the antibiotic resistome and AMR hosts in microcosms using pasture soil. We specifically focused on culturable Acinetobacter spp. and other NFGNB using CHROMagar Acinetobacter. We conducted two 28-days incubation experiments to simulate natural deposition of fresh manure on pasture soil and evaluated the effects on antibiotic resistance genes (ARGs) and bacterial hosts through shotgun metagenomics. We found that manure application altered the abundance and composition of ARGs and their bacterial hosts, and that the effects depended on the soil source. Manure enriched the antibiotic resistome of bacteria only in the soil where native bacteria had a low abundance of ARGs. Our study highlights the role of native soil bacteria in modulating the consequences of manure deposition on soil and confirms the potential of culturable Acinetobacter spp. and other NFGNB to accumulate AMR in pasture soil receiving fresh manure.


Assuntos
Acinetobacter , Antibacterianos , Animais , Bovinos , Feminino , Antibacterianos/farmacologia , Solo , Esterco/microbiologia , Genes Bacterianos , Bactérias/genética , Acinetobacter/genética , Bactérias Gram-Negativas/genética , Microbiologia do Solo
9.
Vet World ; 16(9): 1907-1916, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37859956

RESUMO

Background and Aim: Livestock waste in the form of feces and liquid represents an important reservoir of antibiotic resistance genes (ARGs). Because many ARGs can be horizontally transferred to other pathogens, livestock waste plays an essential role in the emergence and transmission of various ARGs in the environment. Therefore, this study aimed to detect and assess the diversity of tet genes in Escherichia coli isolated from pig farm waste in Banten province, Indonesia. Materials and Methods: Solid waste (feces) and wastewater were collected from 44 pig farms in Banten province. The isolation and identification of E. coli referred to the Global Tricycle Surveillance extended-spectrum beta-lactamase E. coli World Health Organization (2021) guidelines. tet genes were detected using quantitative real-time polymerase chain reaction after dividing pig farms in the province into four clusters based on their adjacent areas and characteristics. Results: tetA, tetB, tetC, tetM, tetO, and tetX were detected in solid waste and wastewater from pig farms, whereas tetE was not detected in either sample type. tetX (100%) and tetO (75%) were the most dominant genes in solid waste, whereas wastewater samples were dominated by tetA, tetM, tetO, and tetX (prevalence of 50% each). Furthermore, eight tet gene patterns were found in pig farm waste (prevalence of 12.5% each). Conclusion: The results showed a high prevalence of tetO and tetX in solid waste and wastewater from pig farms in Banten province. This significant prevalence and diversity indicated the transmission of tet genes from pigs to the environment, posing a serious threat to public health.

10.
Antibiotics (Basel) ; 12(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37887239

RESUMO

Gemella is a catalase-negative, facultative anaerobic, Gram-positive coccus that is commensal in humans but can become opportunistic and cause severe infectious diseases, such as infective endocarditis. Few studies have tested the antimicrobial susceptibility of Gemella. We tested its antimicrobial susceptibility to 27 drugs and defined the resistant genes using PCR in 58 Gemella strains, including 52 clinical isolates and six type strains. The type strains and clinical isolates included 22 G. morbillorum, 18 G. haemolysans (GH) group (genetically indistinguishable from G. haemolysans and G. parahaemolysans), 13 G. taiwanensis, three G. sanguinis, and two G. bergeri. No strain was resistant to beta-lactams and vancomycin. In total, 6/22 (27.3%) G. morbillorum strains were erythromycin- and clindamycin-resistant ermB-positive, whereas 4/18 (22.2%) in the GH group, 7/13 (53.8%) G. taiwanensis, and 1/3 (33.3%) of the G. sanguinis strains were erythromycin-non-susceptible mefE- or mefA-positive and clindamycin-susceptible. The MIC90 of minocycline and the ratios of tetM-positive strains varied across the different species-G. morbillorum: 2 µg/mL and 27.3% (6/22); GH group: 8 µg/mL and 27.8% (5/18); G. taiwanensis: 8 µg/mL and 46.2% (6/13), respectively. Levofloxacin resistance was significantly higher in G. taiwanensis (9/13 69.2%) than in G. morbillorum (2/22 9.1%). Levofloxacin resistance was associated with a substitution at serine 83 for leucine, phenylalanine, or tyrosine in GyrA. The mechanisms of resistance to erythromycin and clindamycin differed across Gemella species. In addition, the rate of susceptibility to levofloxacin differed across Gemella sp., and the quinolone resistance mechanism was caused by mutations in GyrA alone.

11.
Pathogens ; 12(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37764898

RESUMO

The global concern over antimicrobial resistance (AMR) and its impact on human health is evident, with approximately 4.95 million annual deaths attributed to antibiotic resistance. Regions with inadequate water, sanitation, and hygiene face challenges in responding to AMR threats. Enteric bacteria, particularly E. coli, are common agents linked to AMR-related deaths (23% of cases). Culture-based methods for detecting tetracycline-resistant E. coli may be of practical value for AMR monitoring in limited resource environments. This study evaluated the ColiGlow™ method with tetracycline for classifying tetracycline-resistant E. coli. A total of 61 surface water samples from Kentucky, USA (2020-2022), provided 61 presumed E. coli isolates, of which 28 isolates were obtained from tetracycline-treated media. Species identification and tetracycline resistance evaluation were performed. It was found that 82% of isolates were E. coli, and 18% were other species; 97% were identified as E. coli when using the API20E identification system. The MicroScan system yielded Enterobacter cloacae false positives in 20% of isolates. Adding tetracycline to ColiGlow increased the odds of isolating tetracycline-resistant E. coli 18-fold. Tetracycline-treated samples yielded 100% tetracycline-resistant E. coli when the total E. coli densities were within the enumeration range of the method. ColiGlow with tetracycline shows promise for monitoring tetracycline-resistant E. coli in natural waters and potentially aiding AMR surveillance in resource-limited settings among other environments.

12.
Antibiotics (Basel) ; 12(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37760756

RESUMO

In this study, a culture-independent approach was applied to compare the microbiome composition and the abundance of the antimicrobial resistance genes (ARGs) aadA2 for aminoglycosides, tet(A), tet(B), tet(K), and tet(M) for tetracyclines, and mcr-1 for colistin in broiler litter samples collected from conventional and antibiotic-free flocks located in Central Italy. A total of 13 flocks and 26 litter samples, collected at the beginning and at the end of each rearing cycle, were submitted to 16s rRNA sequence analysis and quantitative PCR for targeted ARGs. Firmicutes resulted in the dominant phylum in both groups of flocks, and within it, the Clostridia and Bacilli classes showed a similar distribution. Conversely, in antibiotic-free flocks, a higher frequency of Actinobacteria class and Clostridiaceae, Lactobacillaceae, Corynebacteriaceae families were reported, while in the conventional group, routinely treated with antibiotics for therapeutic purposes, the Bacteroidia class and the Enterobacteriaceae and Bacillaceae families were predominant. All investigated samples were found to be positive for at least one ARG, with the mean values of aadA2 and tet(A) the highest in conventional flocks by a significant margin. The results suggest that antibiotic use can influence the frequency of resistance determinants and the microbial community in poultry flocks, even though other environmental factors should also be investigated more deeply in order to identify additional drivers of antimicrobial resistance.

13.
J Food Prot ; 86(10): 100144, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597606

RESUMO

The impact of in-feed use of tylosin in feedlot cattle on Gram-negative foodborne bacteria is unknown. We evaluated the effect of continuous in-feed tylosin use on the concentration and prevalence of tetracycline-resistant (TETr)-, third-generation cephalosporin-resistant (3GCr)-, and extended-spectrum ß-lactamase-producing (ESBLs) E. coli in feedlot cattle. A cohort of weaned calves (10 animals/group) were randomized to receive a feed ration with or without tylosin. Fecal samples, regularly collected over the entire feeding period, and pen surface and feed samples, collected at the end of the feeding period, were cultured on selective media. Enumeration and binary outcomes were analyzed by mixed effects linear regression or logistic regression, respectively, using treatment and days on feed as fixed factors, and animal ID as a random variable. Tylosin supplementation did not affect the fecal concentrations of TETrE. coli or fecal prevalence of 3GCrE. coli. However, cattle in the tylosin group were 1.5 times more likely (Odds ratio = 1.5: 95% confidence interval: 1.1-2.0) to harbor ESBLs E. coli than the control cattle. Regardless of tylosin treatment, fecal concentrations of TETrE. coli and the prevalence of 3GCr- and ESBLs-E. coli increased over time. Tylosin-supplemented feed did not affect the prevalence of TETrE. coli; 3GCr and ESBLs-E. coli were not detected from the feed samples. Most of the 3GCr- and ESBLs-E. coli isolates carried the blaCTX-M-15 gene, widely detected among ESBLs-E. coli human isolates. In summary, although in-feed tylosin use in feedlot cattle did not select for TETr- and 3GCr-E. coli, it increased the likelihood of detecting ESBL-producing E. coli. Furthermore, the study indicated that the feedlot production setting gradually increases the levels of E. coli resistant to the critically and/or important antibiotics for public health, indicating an increased risk of their dissemination beyond the feedlot environment.


Assuntos
Infecções por Escherichia coli , Tilosina , Animais , Bovinos , Humanos , Antibacterianos/farmacologia , beta-Lactamases , Cefalosporinas/farmacologia , Escherichia coli , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Testes de Sensibilidade Microbiana , Tetraciclina/farmacologia , Tilosina/farmacologia
14.
Braz J Microbiol ; 54(3): 2375-2382, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37418110

RESUMO

Recently, an increasing number of multi drug resistant Salmonella species have been emerged due to overuse of antibiotics in veterinary and human medicine which has adverse consequences on public health. The present study was conducted with the aim of investigating the prevalence of Salmonella infection in village chickens in Sistan region and determining the prevalence of the antibiotic resistance genes in Salmonella isolated from these birds. In this study, 100 chickens were randomly selected from five counties of Sistan region. A cloacal swab sample was taken from each bird and also information about age, gender, breed, proximity with other birds, proximity with waterfowl, proximity with livestock, and receiving different antibiotics especially tetracycline were obtained using a questionnaire. Conventional culture methods used for Salmonella detection and isolation. Then, amplification of invA gene by PCR was used to confirm Salmonella colonies. Finally, 27 samples were confirmed to be infected with Salmonella by both culture and PCR methods. Disk diffusion method was used to determine the sensitivity to 4 antibiotics including; tetracycline, gentamicin, cefepime, and difloxacin. The results of the present study showed that proximity to waterfowl (OR = 0.273) significantly mitigates the risk of Salmonella infection. For the isolates, the highest resistance was recorded against cefepime and the highest susceptibility was to difloxacin. The presence proportion of tetA and tetB in tetracycline resistant isolates was higher than that in susceptible ones but this difference was not statistically significant.


Assuntos
Galinhas , Infecções por Salmonella , Animais , Antibacterianos/farmacologia , Cefepima , Galinhas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Irã (Geográfico)/epidemiologia , Testes de Sensibilidade Microbiana , Prevalência , Salmonella/genética , Resistência a Tetraciclina , Tetraciclinas
15.
Rev Argent Microbiol ; 55(4): 317-331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37400312

RESUMO

Bacillus thuringiensis is an entomopathogen belonging to the Bacillus cereus clade. We isolated a tetracycline-resistant strain called m401, recovered it from honey, and identified it as Bacillus thuringiensis sv. kumamotoensis based on the average nucleotide identity calculations (ANIb) comparison and the analysis of the gyrB gene sequences of different B. thuringiensis serovars. Sequences with homology to virulence factors [cytK, nheA, nheB, nheC, hblA, hblB, hblC, hblD, entFM, and inhA] and tetracycline resistance genes [tet(45), tet(V), and tet(M)/tet(W)/tet(O)/tet(S) family] were identified in the bacterial chromosome. The prediction of plasmid-coding regions revealed homolog sequences to the MarR and TetR/AcrR family of transcriptional regulators, toxins, and lantipeptides. The genome mining analysis revealed 12 regions of biosynthetic gene clusters responsible for synthesizing secondary metabolites. We identified biosynthetic gene clusters coding for bacteriocins, siderophores, ribosomally synthesized post-translationally modified peptide products, and non-ribosomal peptide synthetase clusters that provide evidence for the possible use of Bt m401 as a biocontrol agent. Furthermore, Bt m401 showed high inhibition against all Paenibacillus larvae genotypes tested in vitro. In conclusion, Bt m401 owns various genes involved in different biological processes, such as transductional regulators associated with antibiotic resistance, toxins, and antimicrobial peptides with potential biotechnological and biocontrol applications.


Assuntos
Bacillus thuringiensis , Bacillus thuringiensis/genética , Microbiologia de Alimentos , Filogenia , Bacillus cereus , Antibacterianos/farmacologia , Tetraciclina/metabolismo
16.
J Hazard Mater ; 454: 131560, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37148796

RESUMO

The spread of antibiotic resistant bacteria (ARB) in the environment poses a potential threat to human health, and the reactivation of inactivated ARB accelerated the spread of ARB. However, little is known about the reactivation of sunlight-inactivated ARB in natural waters. In this study, the reactivation of sunlight-inactivated ARB in dark conditions was investigated with tetracycline-resistant E. coli (Tc-AR E. coli) as a representative. Results showed that sunlight-inactivated Tc-AR E. coli underwent dark repair to regain tetracycline resistance with dark repair ratios increasing from (0.124 ± 0.012)‱ within 24 h dark treatment to (0.891 ± 0.033)‱ within 48 h. The presence of Suwannee River fulvic acid (SRFA) promoted the reactivation of sunlight-inactivated Tc-AR E. coli and tetracycline inhibited their reactivation. The reactivation of sunlight-inactivated Tc-AR E. coli is mainly attributed to the repair of the tetracycline-specific efflux pump in the cell membrane. Tc-AR E. coli in a viable but non-culturable (VBNC) state was observed and dominated the reactivation as the inactivated ARB remain present in the dark for more than 20 h. These results explained the reason for distribution difference of Tc-ARB at different depths in natural waters, which are of great significance for understanding the environmental behavior of ARB.


Assuntos
Escherichia coli , Luz Solar , Humanos , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Bactérias
17.
Prev Vet Med ; 215: 105930, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37163775

RESUMO

Liver abscess causes substantial economic loss to the beef cattle industry through liver condemnation, reduced animal performance, and carcass yield. Continuous in-feed use of tylosin is the most effective and a commonly used practice in beef cattle production to prevent liver abscess. However, such mass medication can increase the level of antimicrobial resistant bacteria. We investigated the effect of continuous in-feed use of tylosin in feedlot cattle on (i) concentrations and prevalence of erythromycin-resistant (ERYr) and tetracycline-resistant (TETr) enterococci; (ii) associated antimicrobial resistance genes (ARGs) for resistance; (iii) species distribution; iv) macrolide and tetracycline resistance gene concentrations; and (v) tylosin concentration. A cohort of weaned calves were randomized to receive tylosin-medicated feed (Tylosin; n = 10) or nonmedicated feed (Control; n = 10) for a full feedlot cycle. Feces, feed and pen-surface samples were collected and processed by culture, droplet digital PCR, and liquid chromatography/mass spectroscopy for bacterial enumeration, detection and characterization, ARG quantification, and tylosin concentration, respectively. Data were analyzed by mixed effects linear- or binary-regression models depending on the outcomes. Tylosin administration significantly increased fecal concentration (P < 0.001) and prevalence (P = 0.021) of ERYr enterococci and erm(B) gene concentration (P < 0.001), compared to the control group. Interestingly, tylosin administration significantly reduced (P = 0.037) fecal TETr enterococci concentration compared to the control group, with no significant effect (P = 0.758) on fecal tet(M) concentration. In both treatment groups, enterococci concentrations increased over time, peaking on 174 days in feed before returning to the baseline. ERYr enterococci concentration was significantly (P = 0.012) higher in tylosin medicated feeds, with no significant effect (P = 0.321) on TETr enterococci concentration. Pen-surface concentration of ermB was significantly (P = 0.024) higher in the tylosin group, with no significant effect (P > 0.05) on bacterial concentrations. Increased diversity and a shift in the composition of enterococcal species and ARGs were observed over time, although tylosin use did not significantly affect (P > 0.05) their prevalence. Tylosin concentration was significantly higher in the feces of tylosin administered cattle (P < 0.001) and medicated feed (P = 0.027), with numerically higher pen-surface concentration (P = 0.065) in the tylosin group. In conclusion, continuous in-feed use of tylosin in feedlot cattle increases macrolide resistant enterococci and its fecal excretion, while decreasing tetracycline resistance. Two medically important species, E. faecium and E. faecalis, were predominant regardless of resistance status or sample source. Risk-based approaches including label changes to limit tylosin use such as withdrawal period, and development of effective manure treatments are potential areas of research to reduce environmental and public health impacts.


Assuntos
Doenças dos Bovinos , Abscesso Hepático , Bovinos , Animais , Tilosina/farmacologia , Enterococcus , Macrolídeos/farmacologia , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Abscesso Hepático/epidemiologia , Abscesso Hepático/microbiologia , Abscesso Hepático/veterinária , Farmacorresistência Bacteriana , Fezes/microbiologia , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/epidemiologia
18.
Vet World ; 16(3): 509-517, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37041843

RESUMO

Background and Aim: Slaughterhouses and their effluents could serve as a "hotspot" for the occurrence and distribution of antibiotic-resistant bacteria in the environment. This study aimed to understand the distribution of tetracycline resistance genes in Escherichia coli isolated from the floor surface and effluent samples of pig slaughterhouses in Banten Province, Indonesia. Materials and Methods: Ten samples, each from floor surface swabs and effluents, were collected from 10 pig slaughterhouses in Banten Province. Escherichia coli strains were isolated and identified by referring to the protocol of the Global Tricycle Surveillance extended-spectrum beta-lactamase E. coli from the WHO (2021). Quantitative real-time polymerase chain reaction (qPCR) was used to detect the tet genes. Results: The tetA, tetB, tetC, tetM, tetO, and tetX genes were distributed in the isolates from the floor surface samples, and the tetA, tetC, tetE, tetM, tetO, and tetX genes were distributed in the isolates from the effluent samples. The tetO gene (60%) was the most dominant gene in the isolates from floor surface samples, while the tetA gene was the dominant one in the isolates from the effluent samples (50%). The tetA + tetO gene combination was the dominant pattern (15%) in the E. coli isolates. Conclusion: The high prevalence and diversity of the tet genes in floor surface and effluent samples from pig slaughterhouses in Banten Province indicated that the transmission of the tet genes had occurred from pigs to the environment; thus, this situation should be considered a serious threat to public health.

19.
Antibiotics (Basel) ; 12(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978293

RESUMO

Campylobacter (C.) spp. are the most important foodborne, bacterial, and zoonotic pathogens worldwide. Resistance monitoring of foodborne bacterial pathogens is an important tool to control antimicrobial resistance as a part of the "One Health" approach. The detection and functionality of new resistance genes are of paramount importance in applying more effective screening methods based on whole genome sequencing (WGS). Most tetracycline-resistant C. spp. isolates harbor tet(O), a gene that encodes a ribosomal protection protein. Here we describe tet(O)_3, which has been identified in two food isolates of C. jejuni and is very similar to the tet(O) gene in Streptococcus pneumoniae, having a truncated promoter sequence. This gene confers resistance to tetracycline below 1 mg/L, which is the epidemiological cut-off value. We have analyzed the entire genome of these two isolates, together with a C. jejuni isolate found to have high-level resistance to tetracycline. In contrast to the highly resistant isolate, the promoter of tet(O)_3 is highly responsive to tetracycline, as observed by reverse transcription polymerase chain reaction (RT-PCR). In addition, the two isolates possess a CRISPR repeat, fluoroquinolone resistance due to the gyrA point mutation C257T, a ß-lactamase resistance gene blaOXA-184, a multidrug efflux pump CmeABC and its repressor CmeR, but no plasmid. Low-level antibiotic resistant C. jejuni might therefore have an advantage for surviving in non-host environments.

20.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36737425

RESUMO

The ecological state of Lake Sevan, the largest drinking water reservoir for the South Caucasus, formed under the influence of climatic and social changes. This study assesses the bacteriological quality of water in the rivers of the Lake Sevan basin and tetracycline-resistant bacteria isolated from fish and people living near the rivers of the Lake Sevan basin in Armenia in autumn 2019 and spring 2020. No differences have been shown for the tetracycline resistance of the investigated E. coli isolated from the human gut and the Masrik, Argichi, and Gavaraget Rivers. Horizontal gel electrophoresis revealed the same plasmid bands in most of the investigated E. coli with the same tetracycline resistance from the different sources of the Argichi River (obtained from people/fish/water sources where the fish were caught). The results also showed that most of the waters carried Edwardsiella spp., Erwinia spp., Morganella spp., and Proteus spp. in addition to E. coli; the coliform index did not exceed the standard level of 5 × 104 CFU mL-1 there. These findings highlight the importance of multidisciplinary studies of bacteria from "interacting" ecosystems, which might serve as a basis for the suggestion of microbial antibiotic resistance as another indicator of water pollution.


Assuntos
Água Potável , Resistência a Tetraciclina , Humanos , Animais , Lagos , Escherichia coli , Ecossistema , Brânquias , Antibacterianos/farmacologia , Tetraciclina , Rios/microbiologia , Bactérias , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...